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Abstract. The problem of a neutral spinning particle in interaction with a linear increasing rotating mag-
netic field and a Poschl–Teller potential is considered via path integrals. The calculations are carried out
explicitly using an external current source. The problem is then reduced to that of a spinning forced Poschl–
Teller oscillator whose spin is coupled to external derivative current sources. The result of the propagator
is given as a series. The relative propagator of this forced oscillator is converted to that of an angular
momentum via an extension of the dimension. Next, the series is exactly summed by means of a Laplace
transformation and the orthonormalization relation of the eigenfunctions of the angular momentum.

1 Introduction

The Schrödinger equation has played an important role
in quantum mechanics and is still the principal preoccu-
pation of theoretical and experimental physics, because
quantum mechanics has conquered modern physics via
quantitative results. This equation is usually illustrated
by some simple problems whose solutions are obtained in
the analytical form to which physicists generally have re-
course to illustrate the reality by some simple analytical
models. In addition, we can also claim that this class of
analytical models has been enlarged owing to the super-
symmetry techniques based essentially on the idea of fac-
torization. Consequently, the number of exactly solvable
potentials has never ceased to increase and this list is still
open. However, there exists in quantum mechanics a fun-
damental entity, spin, without which the explanation of
numerous experiences is not effectively acceptable. This
category of phenomena is described by the Pauli equa-
tion, which is an extension of the Schrödinger equation.
The Pauli Hamiltonian contains besides the Schrödinger
one a term describing the spin–field interaction. As a con-
sequence, one would also search the general class of Pauli
solvable problems, which would without doubt be prof-
itable for applied physics. As an example, let us quote one
case of this class which has become very popular owing to
its direct application to the practical domain of physics.
This is the well-known time dependent field (rotating) act-
ing on a two level atom whose evolution is described by a
Pauli type equation and which has made conspicuous the
transition probabilities [1]. Without exaggeration, we can
also say that, apart from this type of interaction and some
ones relating to it [2], there exist few analytical and exact
calculations treating the time dependent spin–field inter-
action. Moreover, if a space dependence of the exterior

field occurs of the time dependent one this list becomes
more restrictive [3]. In addition, the task will be almost
unsolvable if we attempt to construct these solutions by
path integral techniques, because as everyone knows the
spin is an incontestable quantum physical quantity which
takes only discrete values. This difficulty is tied to the
fact that the path integral needs some conceptually clas-
sical objects like trajectories and clearly until now we do
not know how to handle this technique in this important
case. To this end, some attempts have been made to give a
partial solution by using the Schwinger model of spin and
according to these techniques a few explicit calculations
are then readily carried out [4].

In this paper, which is a continuation of previous works
[8,9], our aim is to partially solve this type of problems by
considering the case of a neutral spinning particle mov-
ing in the increasing rotating space magnetic field and
Poschl–Teller oscillator potential described by the follow-
ing Hamiltonian:

H =
p2

2m
+

1
2m

(c1 tanαy + c2 cotαy)
2 + µ0Bσ, (1)

where

B(y) = B(y)
(
cos (2κy + 2δ(y)) , 0, sin (2κy + 2δ(y))

)
,

(2)

B2(y) =
(

κ

mµ0

)2

(c1 tanαy + c2 cotαy)
2

+
(

α

2mµ0

)2 (
c1 sec2 αy − c2 csc2 αy

)2
(3)

and
tan 2δ(y) =

2κ
α

c1 tanαy + c2 cotαy
c1 sec2 αy − c2 csc2 αy

; (4)
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λ = 1/(2m), y ∈ [0, π/(2α)], and α, c1, and c2, are positive
constants.

This Hamiltonian describes the motion of a non-
charged spinning particle moving along the y axis in inter-
action with a magnetic field rotating in the x–z plane with
an angle depending on some function of the y variable.
This has been solved first in [5] using the familiar factor-
ization method for solving the Schrödinger equation. As is
well known, this is intimately related to supersymmetric
quantum mechanics and to our knowledge there has been
no attempt in treating this using path integral techniques
apart from works of Kubo [6] and of Junker [7] which are
based respectively on semiclassical and quasi-semiclassical
methods. We can assert that there is no exact calculus for
this and the aim of this paper is to give a first attempt
for the previous case where we will present an equivalent
path integral method based on the technique of external
current sources and an extension of dimension. In effect,
the difficulty in treating this type of interaction resides in
the fact that when one tries to introduce some rotations
on the spin states which diagonalize the Hamiltonian, the
non-homogeneity of the field gives rise to some correc-
tions on the exterior motion as an effective potential and
apparently this complicates the task. Now, in spite of the
need of a general method, treating this type of interaction
in the context of a path integral framework, there exists
a method which tries to give a solution to this problem
even in part [8–10].

In Sect. 2, we will give some notation and definitions
needed for our further computations, and to deal with the
problem we will follow exactly the same technique as of
[9]. In Sect. 3, we restrict ourselves to the particular case
of the neutral spinning particle in interaction with an in-
creasing rotating magnetic field and the Poschl–Teller po-
tential. For this case the series is exactly summed by con-
verting the problem on the sphere via an extension of the
dimension and using the orthogonalization relation of the
eigenfunctions of angular momentum. The energy spec-
trum and the corresponding wave functions are deduced.
Section 4 is devoted to our concluding remarks.

2 Formalism and method

In this section, we will first present our strategy in treat-
ing this type of problem by elaborating a general method
relative to the Hamiltonian given by

H =
p2

2m
+ V (y) − µ0B(y)n(y)σ, (5)

where we choose the orientation of the magnetic field

n(y) = (sin(2κy + 2δ(y)), 0, cos(2κy + 2δ(y))) , (6)

and V̂ (y), B(y) and δ(y) are arbitrary functions which
would be judiciously chosen in the explicit application.

Now, let us focus on some definitions, properties and
notation needed for the further developments. As we are
interested in the spin–field interaction, we shall replace the

Pauli matrices σi by a pair of fermionic operators (u, d)
known as the Schwinger fermionic model of spin, following
the recipe

σi −→ (u+, d+)σi
(
u

d

)
, (7)

where the pair (u, d) describes two-dimensional fermionic
oscillators [4].

According to this replacement, the Hamiltonian con-
verts to the following fermionic form:

H =
p2

2m
+ V (y) − µ0B(y)

(
u†, d†)n(y)σ

(
u

d

)
. (8)

Furthermore, it is suitable to take the quantum state as
| y, η〉, where y describes the exterior evolution of the par-
ticle and η describes the spin dynamics. Following the ha-
bitual construction procedure of the path integral, we de-
fine the propagator as the matrix element of the evolution
operator between the initial state | ya, ηa〉 and the final
state | yb, ηb〉

K(yb,ηb, ya,ηa;T ) = 〈yb, ηb | U(T ) | ya, ηa〉, (9)

where

U(T ) = TD exp

(
−i
∫ T

0
Hdt

)
, (10)

where TD is the Dyson time ordered operator, and next
discretize the time T : ε = T/(N+1). The use of the Totter
formula and the introduction at each intermediate instant
of time of the resolution relations∫

exp(−η∗η) | η〉〈η | dηdη∗ = 1 (11)

and ∫
| y〉〈y | dy = 1, (12)

allow us to obtain the following discretized path integral
form of the propagator:

K(yb,ηb, ya,ηa;T )

= lim
N→∞

∫ N+1∏
n=1

( m

2πiε

)1/2 N∏
n=1

(
dyndηndη∗

ne
−η∗

nηn

)

× exp

{
i
N+1∑
n=1

[
m

2ε
(yn − yn−1)

2 − εV (yn) − iη∗
nηn−1

+ εµ0B(yn)η∗
nn(yn)σηn−1

]}
, (13)

with

y0 = ya, yN+1 = yb, η0 = ηa, and η∗
N+1 = η∗

b . (14)

This last expression represents the path integral of the
propagator which has been the subject of our previous
papers [4] and has the advantage of giving the chance to
explicitly perform some concrete calculations.
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Our strategy to treat this kind of problem was exposed
in [9] and it consists of what follows. Knowing that inte-
grations on the Grassmmanian variables are of Gaussian
type their evaluation is immediate. With this intention,
one initially introduces two external sources which enable
us to quickly write the perturbation series by decoupling
the diagonal terms from non-diagonal ones. Indeed, in this
way the non-diagonal ones will contain a functional deriva-
tive relative to these currents, which in their turn will act
on the diagonal ones. The latter are written in the form of
a path integral relating to a particle subject to the action
of a scalar potential forced by external currents.

After all these manipulations, it is easy to show that
the calculation of the propagator series is reduced to

K(yb,ya;T ) = e−i(κ2/2m)T eiσy(κyb)

×

KI(yb,ya;T ) +

∞∑
n=1




 n∏
j=1

∫ tj−1

0
dtj
∫

dyj




×KI(yb,y1;T − t1)

×ΛI(t1)KI(y1,y2; t1 − t2) · · ·ΛI(tn−1)

×KI(yn−1,yn; tn−1 − tn) (15)

× ΛI(tn)KI(yn,ya; tn − 0)





∣∣∣∣∣∣
I=I∗=0

e−iσy(κya),

where the propagator KI(yb,ya;T ) is given by

KI(yb,ya;T ) =
∫

Dy exp
{
i
∫ T

0
dt

[
m

2
ẏ2 − V (y)

+ (iκẏ + µ0B(y) sin 2δ(y)) I(t)

+ (−iκẏ + µ0B(y) sin 2δ(y)) I∗(t)

+µ0B(y) cos 2δ(y)σz

]}
(16)

and

ΛI(tn) =


 0

δ

δI(tn)
δ

δI∗(tn)
0


 . (17)

Now, we can say that the evaluation of the propagator
of the system is reduced to the calculation of the propa-
gator (16), which, in principle, will be easy to carry out.
It is now readily seen that its matrix form is given by

KI(yb,ya;T ) =

(
KI

+(yb,ya;T ) 0
0 KI

−(yb,ya;T )

)
, (18)

where

KI
±(yb,ya;T ) =

∫
Dy exp

{
i
∫ T

0
dt

[
m

2
ẏ2 − V (y)

+ (iκẏ + µ0B(y) sin 2δ(y)) I(t)

+ (−iκẏ + µ0B(y) sin 2δ(y)) I∗(t)

±µ0B(y) cos 2δ(y)

]}
. (19)

At this level it is necessary to pause because of the non-
specified form of V (y), B(y) and δ(y). Then, in order to
proceed in our calculations, we suppose that the expres-
sion of the previous propagator can be evaluated explicitly
in a manner that allows us to write the spectral decom-
position for this propagator. Next, taking advantage of
the recurrence formula of wave functions corresponding
to the problem related to the scalar potential V (y) which
is forced by the exterior sources and coupled to the rotat-
ing magnetic field, the action of ΛI on KI(n, n− 1) shall
easily be computed. Equalizing the exterior sources at zero
and inserting the result into (15), the integration over {y}
would be computed using the orthonormalization proper-
ties. Finally, the integration over intermediate instants tn
will then be done using a Laplace transformation or other
methods.

In the next section we will consider the special case
given by the relations (1)–(4).

3 Application

Before beginning to treat the explicit application given
by the relations (3) and (4), it is suitable to simplify
B(y) cos 2δ(y) and B(y) sin 2δ(y) to the following expres-
sions, where y ∈ [0, π/(2α)]:

B(y) sin 2δ(y) =
κ

mµ0
(c1 tanαy + c2 cotαy), (20)

B(y) cos 2δ(y) =
α

2mµ0

(
c1/ cos2 αy − c2/ sin2 αy

)
.(21)

After a substitution of these expressions in (19), the prop-
agator KI

±(y
′′, y′; s′′ − s′) becomes

KI
±(yb,ya;T ) =

∫
Dy(t) exp

{
i
∫ T

0

[
m

2
ẏ2 (22)

− α2

2m

(
c±1 (c

±
1 − 1)

cos2 αy
+
c±2 (c

±
2 − 1)

sin2 αy

)
+

1
2m

(c1 − c2)2

+i
(
κẏ + i

κ

m
(c1 tanαy + c2 cotαy)

)
I(t)

+i
(
−κẏ + i

κ

m
(c1 tanαy + c2 cotαy)

)
I∗(t)

]
dt

}
,

where c±1 and c±2 are defined by

c+1 =
c1
α

+ 1, c+2 =
c2
α
, c−1 =

c1
α

and

c−2 =
c2
α

+ 1. (23)

It is remarkable that the previous propagatorKI
±(yb,ya;T )

represents the one of the Poschl–Teller oscillator enforced
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by the external sources I(t) and I∗(t). Therefore, to give
a solution to this problem we shall reduce it to a sphere
variety by using the trick of the dimension extension. This
fact allows the manifestation of the dynamical symmetry
of the problem, thus simplifying the computations.

Therefore, we are firstly concerned with the calculation
of the propagator for which the classical Lagrangian is
given by

LI
±(y, ẏ; t) =

m

2
ẏ2 − α2

2m

(
c±1 (c

±
1 − 1)

cos2 αy
+
c±2 (c

±
2 − 1)

sin2 αy

)

i
(
κẏ + i

κ

m
(c1 tanαy + c2 cotαy)

)
I(t)

+i
(
−κẏ + i

κ

m
(c1 tanαy + c2 cotαy)

)
I∗(t). (24)

Defining the angular variable θ = 2αy with θ ∈ [0, π] and
using the following asymptotic formula:

exp


−

4p2 − 1

4
2z




 (25)

=
√

z

2π

∫ 2π

0
exp [±2ipχ− z (1 − cosχ)] dχ,

which is valid for large z and 2p having a real value greater
than unity [12].

We can write the action terms containing the c±1 and
c±2 constants respectively as

exp


−

(
c±1 − 1

2

)2

− 1
4

2
m

iεα2 cos2(θj/2)


 =
[ m

2πiα2ε
cos2(θj/2)

]1/2

×
∫ 2π

0
exp
[

− i
(
c±1 − 1/2

)
χj +
(
im/α2ε

)
cos2(θj/2)

× (1 − cosχj)
]
dχj (26)

and

exp


−

(
c±2 − 1

2

)2

− 1
4

2
m

iεα2 sin2(θj/2)


 =
[ m

2πiα2ε
sin2(θj/2)

]1/2

×
∫ 2π

0
exp
[

− i
(
c±2 − 1/2

)
βj +
(
im/α2ε

)
sin2(θj/2)

× (1 − cosβj)
]
dβj . (27)

Let us notice that this latter technique, which we call
the dimension extension, is a very powerful tool and has
played an important role in the path integral. The sub-
stitution of these expressions in (22) gives the following
result for the propagator:

KI
±(yb,ya;T ) =

4
α
(sin θ′ sin θ′′)1/2

∫ 2π

0
dχ′′
∫ 2π

0
dβ′′

× lim
N→∞

∫ N+1∏
j=1

[ m

8πiα2�ε

]3/2

×
N∏
j=1

(2 sin θjdθjdχjdβj) exp
i
�

N+1∑
j=1

(SI
±j
)
, (28)

where SI
±j is the action defined by

SI
±j =

m

8α2ε
(∆θj)

2 +
(
c±1 − 1/2

)
χj +
(
c±2 − 1/2

)
βj

+
(
m/α2ε

)
cos2(θj/2) (1 − cosχj)

+
(
m/α2ε

)
sin2(θj/2) (1 − cosβj)

+i
(
κ

2α
∆θj + iε

κ

m

(
c1 tan

θj
2
+ c2 cot

θj
2

))
Ij

+
1
2m

(c1 − c2)2 (29)

−i
(
κ

2α
∆θj − iε

κ

m

(
c1 tan

θj
2
+ c2 cot

θj
2

))
I∗
j .

At this stage, instead of the variables χj and βj , we intro-
duce the two Euler angular variables ψj and ϕj causing
the following change:

χj =
1
2
(∆ψj +∆ϕj) ; βj =

1
2
(∆ψj −∆ϕj) , (30)

with ϕj ∈ [0, 2π] and ψj ∈ [0, 4π].
As is easy to verify, the path integral measure and the

infinitesimal action become

N∏
j=1

(dχjdβj) =
N∏
j=1

(
1
2
dϕjdψj

)
(31)

and

N+1∑
j=1

(
c±1 − 1/2

)
χj +
(
c±2 − 1/2

)
βj

=
(
c±1 + c±2 − 1

)/
2
N+1∑
j=1

∆ψj +
(
c±1 − c±2

)/
2
N+1∑
j=1

∆ϕj

=
1
2
(
c±1 + c±2 − 1

)
(ψN+1 − ψ0)

+
1
2
(
c±1 − c±2

)
(ϕN+1 − ϕ0) . (32)

Consequently, the path integral (16) takes the following
form:

KI(yb, ya;T ) =
α

8π2 (sin θa sin θb)
1/2

×
∫ 2π

0
dϕb
∫ 4π

0
dψbKI(θb, ϕb, ψb, θa, 0, 0;T )

×e+(i/2m)(c1−c2)2−(i/2α)(c1+c2)(ψb−ψa)−(i/2α)(c1−c2)(ϕb−ϕa)

×
(
e−(i/2)(ϕb−ϕa) 0

0 e+(i/2)(ϕb−ϕa)

)
, (33)
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where the kernel KI(θb, ϕb, ψb, θa, 0, 0;T ) has the follow-
ing path integral expression:

KI(θb, ϕb, ψb, θa, 0, 0;T )

= lim
N→∞

∫ π

0

∫ 2π

0

∫ 4π

0

N+1∏
j=1

[ m

8πiα2�ε

]3/2
(34)

×
N∏
j=1

(sin θjdθjdϕjdψj) 16π2 exp


 i

�

N+1∑
j=1

SI
j


 ,

with

SI
j =

m

8α2ε
(∆θj)

2

+
(
m/α2ε

)
cos2(θj/2) (1 − cos(∆ψj +∆ϕj)/2)

+
(
m/α2ε

)
sin2(θj/2) (1 − cos(∆ψj −∆ϕj)/2)

+i

(
κ

2α
∆θj + iε

κ

m

×
(
(c1 + c2)

1
sin θj

+ (c2 − c1) cot θj

))
Ij

−i

(
κ

2α
∆θj − iε

κ

m

×
(
(c1 + c2)

1
sin θj

+ (c2 − c1) cot θj

))
I∗
j . (35)

Now, the use of the expansion of cos∆xj at fourth order
in ∆xj , allows us to write

cos(∆ψj +∆ϕj)/2

= 1 − 1
23

(
(∆ψj)2 + (∆ϕj)2 + 2∆ψj∆ϕj

)
+

1
244!
(
(∆ψj)4 + (∆ϕj)4 + 6(∆ψj)2(∆ϕj)2

)
(36)

and

cos(∆ψj −∆ϕj)/2

= 1 − 1
23

(
(∆ψj)2 + (∆ϕj)2 − 2∆ψj∆ϕj

)
+

1
244!
(
(∆ψj)4 + (∆ϕj)4 + 6(∆ψj)2(∆ϕj)2

)
. (37)

As usually done in path integral techniques, we approxi-
mate (∆ψj)4,(∆ϕj)4, and (∆ψj)2.(∆ϕj)2 by quantum po-
tential corrections following the standard procedure [11],




〈(∆ψj)4〉 = 〈(∆ϕj)4〉 � 3
(
4α2ε

m

)2

,

〈(∆ψj)2(∆ϕj)2〉 �
(
4α2ε

m

)2

.

(38)

Thus, the infinitesimal action SI
j turns into

SI
j =

m

8α2ε
(∆θj)2 +

(
m/8α2ε

) (
(∆ψj)2 + (∆ϕj)2

)

+
(
m/4α2ε

)
cos(θj)∆ψj∆ϕj

−α2ε

2m
+ i

[
(κ/2α)∆θj

+iε
κ

m

(
(c1 + c2)

1
sin θj

+ (c2 − c1) cot θj

)]
Ij

−i

[
(κ/2α)∆θj − iε

κ

m

×
(
(c1 + c2)

1
sin θj

+ (c2 − c1) cot θj

)]
I∗
j . (39)

The evaluation of the propagator KI(θb, ϕb, ψb, θa, 0, 0;T )
in the configuration space seems to be a very hard task
due to the presence of the external sources. To overcome
this difficulty, it is convenient to use the phase space by
linearizing the quadratic terms of the infinitesimal action
(∆θj)2, (∆ψj)2, (∆ϕj)2 following the formula

∫ +∞

−∞
exp
(
ap2 + bp

)
dp =
√

−π

a
exp
(

− b2

4a

)
. (40)

We will then get for the propagator KI(θb, ϕb, ψb, θa, 0,
0;T ) the following expression:

KI(θb, ϕb, ψb, θa, 0, 0;T )

= 16π2
∫ π

0
Dθ sin θ

∫ 2π

0
Dϕ
∫ 4π

0
Dψ
∫ Dpθ

2π�

×
∫ Dpϕ

2π�

∫ Dpψ
2π�

e−i(α2/2m)T .

× exp i
∫ s′′

s′

[
pθ θ̇ + pϕϕ̇+ pψψ̇ −HI

]
dt, (41)

with

HI =
2α2

m

[
p2
θ +

1
sin2 θ

(
p2
ϕ + p2

ψ − 2pϕpψ cos θ
)

+
κ�

α

(
cot θpϕ − ipθ − pψ

sin θ

)
I(t)

+
κ�

α

(
cot θpϕ + ipθ − pψ

sin θ

)
I∗(t)
]
. (42)

The latter formulae have been improved by extending the
variables ϕ and ψ to the domain (−∞,+∞) using the
periodic replacement (ϕ,ψ) → (ϕ+2πN,ψ+2πN ′), then
changing them as follows:

ϕ(t) → ϕ(t) +
2ακ
m

∫ t

0
(I(s) + I∗(s)) cot θ(s)ds,

ψ(t) → ψ(t) − 2ακ
m

∫ t

0
(I(s) + I∗(s))

1
sin θ(s)

ds, (43)

and finally by omitting all the nonlinear terms in I(s) and
I∗(s) which vanish because the matrix ΛI(tn) is linear in
the derivative over the sources.
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Furthermore, it is easy to show that the Hamiltonian
HI is closely related to the one of the top with a momen-
tum J. In effect, this correspondence will be visible if we
put

J1 = −pϕ sinϕ cot θ + pθ cosϕ+ pψ
sinϕ
sin θ

,

J2 = pϕ cosϕ cot θ + pθ sinϕ− pψ
cosϕ
sin θ

,

J3 = pϕ,


 (44)

where J1,J2 and J3 are the components of the momentum
J verifying the following Poisson brackets:

{Ji, Jj} = Jk, i, j, k is a cyclic permutation of 1, 2, 3.
(45)

This result is a consequence of the canonical Poisson
brackets of the phase space variables (pθ, pϕ, pψ, θ, ϕ, ψ) .

Thus, the Hamiltonian HI will be written as

HI =
2α2

m

[
J2 + (κ/α) e−iϕI(t)J+ + (κ/α)e+iϕI∗(t)J−

]
,

(46)
with

J± = J1 ± iJ2.

The components J±, being operators, are the expression,
extended to the sphere, of the operators L± of [5].

Now, the appearance of e−iϕ and e+iϕ besides respec-
tively the sources I(t) and I∗(t) constrain a little more the
computations and in order to reduce the problem again,
let us introduce the following replacement:

(κ/α)e−iϕI(t) = Υ (t), (κ/α)e+iϕI∗(t) = Υ ∗(t), (47)

which gives for HI the following form:

HΥ =
2α2

m

[
J2 + Υ (t)J+ + Υ ∗(t)J−

]
(48)

and for the differential matrix ΛI(tn) the following the
expression:

ΛI(tn) =
κ

α

(
e−(i/2)ϕn 0

0 e+(i/2)ϕn

)
ΛΥ (tn)

×
(
e+(i/2)ϕn 0

0 e−(i/2)ϕn

)
, (49)

with

ΛΥ (tn) =


 0

δ

δΥ (tn)
δ

δΥ ∗(tn)
0


 . (50)

At this level, let us to note that the computation of the
propagator relative to the Hamiltonian (48) is readily done
and the result is a generalization of that of [13] because of
the presence of the term J2 in the Hamiltonian. In fact,
the term containing the currents Υ (t) and Υ ∗(t) can be

treated as a perturbation. Accordingly, it is easy to show
that the propagator KΥ (θb, ϕb, ψb, θa, 0, 0;T ) will be given
by the following expression projected on the spin states:

KΥ (θb, ϕb, ψb, θa, 0, 0;T )

= 16π2
+∞∑
2J=0

+J∑
m′,m′′=−J

+J∑
ν=−J

[
e−i(α2/2m)(2J+1)2T

×IΥ (m′′,m′;T ) (κ/α) (2J + 1) eim
′′ϕbeiνψbe−im′ϕa

×e−iνψadJm′′,ν(θb)d
J
m′,ν(θa)

]
, (51)

where dJm,ν(θ) is the Wigner function and we notice that
this result without IΥ (m′′,m′;T ) is nothing but the prop-
agator of the free particle on the sphere [12].

The amplitude IΥ (m′′,m′;T ) is given by [13]

IΥ (m′′,m′;T )

=
∞∑
l=0

{
(−1)l

√
(J +m′′)! (J −m′′)! (J +m′)! (J −m′)!

l! (J −m′′ − l)! (J +m′ − l)! (m′′ −m′ + l)!

× (f (T ))J+m′−l (g (T ))m
′′−m′+l

× (f̄ (T ))J−m′′−l (ḡ (T ))l
}

(52)

and f and g are complex functions verifying the following
coupled differential equations

df
ds

= i(2α2/m)Υ ḡ,
dg
ds

= −i(2α2/m)Υ f̄ , (53)

with the following boundary conditions

f(0) = 1, g(0) = 0. (54)

In addition, in what follows we are not interested in the
explicit solutions of these equations, but in their formal
solutions which are given by

f(s) = i(2α2/m)
∫ s

0
Υ (τ)ḡ(τ)dτ + 1, (55)

g(s) = −i(2α2/m)
∫ s

0
Υ (τ)f̄(τ)dτ, (56)

because it is the variational derivative over the external
sources Υ (τ) and Υ ∗(τ) which appears in the computa-
tions. In effect, we will only need the following derivative
expressions:

δg(s2j−1)
δΥ (s2j−1)

∣∣∣∣
Υ,Υ∗=0

= −i(2α2/m),

and

δḡ(s2j)
δΥ ∗(s2j)

∣∣∣∣
Υ,Υ∗=0

= +i(2α2/m), (57)

and all other derivatives vanish. This result is obtained
with the help of the boundary conditions (54).
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After this, let us turn to the evaluation of the per-
turbation series (15). Firstly, from the substitution of the
result (51) in (33) we get

KΥ (yn,yn+1; tn − tn−1)

= 2αe−(i/2m)(α2(2J+1)2−(c1−c2)2)T

×(κ/α) (sin θn sin θn+1)
1/2

×
∫ 2π

0
dϕn
∫ 4π

0
dψn

+∞∑
2J=0

+J∑
m′

n,m
′′
n=−J

+J∑
ν=−J

×
[
(2J + 1) IΥ (m′′

n,m
′
n; tn − tn−1) eim

′′
nϕn

×eiνψne−im′
nϕn+1e−iνψn+1dJm′′

n,ν
(θn)dJm′

n,ν
(θn+1)

]

×e−(i/2α)(c1+c2)(ψn−ψn+1)−(i/2α)(c1−c2)(ϕn−ϕn+1)

×
(
e−(i/2)(ϕn−ϕn+1) 0

0 e+(i/2)(ϕn−ϕn+1)

)
. (58)

After substituting this result in (15), we will need to
compute the following expression:

Λ∓(tn)K∓(yn,yn+1; tn − tn+1). (59)

This can be evaluated using the following results corre-
sponding respectively to the derivation over the external
sources at the instant sn:

δ

δ ± (sn)
IΥ (m′′

n,m
′′
n; sn − sn+1) |Υ=Υ∗=0 (60)

→ δ

δΥ (sn)
IΥ (m′′

n,m
′′
n; sn − sn+1 |Υ=Υ∗=0

and

δ

δ ±∗ (sn)
IΥ (m′′

n,m
′′
n; sn − sn+1) |Υ=Υ∗=0 (61)

→ δ

δΥ ∗(sn)
IΥ (m′′

n,m
′′
n; sn − sn+1) |Υ=Υ∗=0 .

The integration over the Euler variables is facilitated by
using the following orthogonalization relations:

∫ 2π

0
dϕ
∫ 4π

0
dψei(m−m′)ϕ · ei(ν−ν′)ψ = 8π2δm,m′ ·δν ,ν′

(62)
and∫ π

0
dJm,ν(θ) · dJm′,ν′(θ) sin θdθ = δm,m′ ·δν ,ν′ · 1

2J + 1
.

(63)

The Wigner function dJm,ν(θ) vanishes for J < max
{| m |, | ν |}, so we may shift the summation of (58) by let-
ting J = n +max {| (1/2α)(c1 − c2) |, | (1/2α)(c1 + c2) |}
= n+ (1/2α)(c1 + c2), (n = 0, 1, 2, · · ·).

Therefore, the series of the propagator given by (15)
will be reduced to

K(yb,ya;T ) = e−iσy(κyb)

[
α (sin(2αyb) sin(2αya))

1/2

×
∞∑
n=0

(2n+ (c1 + c2)/α+ 1) exp(−iET )

×
(
A(yb, ya;T ) B(yb, ya;T )
C(yb, ya;T ) D(yb, ya;T )

)]
eiσy(κya),

(64)

where the elements of the matrix are given by the following
expressions:

A(yb, ya;T ) (65)

= d
n+(1/2α)(c1+c2)
(1/2α)(c1−c2)+(1/2),(1/2α)(c1+c2)

(2αyb)

×dn+(1/2α)(c1+c2)
(1/2α)(c1−c2)+(1/2),(1/2α)(c1+c2)

(2αya)

×
[
1 +

∞∑
n=1

(ω)2n
∫ T

0
ds1
∫ s1

0
ds2 · · ·

∫ s2n−1

0
ds2n

]

B(yb, ya;T ) (66)

= d
n+(1/2α)(c1+c2)
(1/2α)(c1−c2)−(1/2),(1/2α)(c1+c2)

(2αyb)

×dn+(1/2α)(c1+c2)
(1/2α)(c1−c2)+(1/2),(1/2α)(c1+c2)

(2αya)

×
[ ∞∑
n=0

(iω)2n+1
∫ T

0
ds1
∫ s1

0
ds2 · · ·

∫ s2n−1

0
ds2n

]

C(yb, ya;T ) (67)

= d
n+(1/2α)(c1+c2)
(1/2α)(c1−c2)−(1/2),(1/2α)(c1+c2)

(2αyb)

×dn+(1/2α)(c1+c2)
(1/2α)(c1−c2)+(1/2),(1/2α)(c1+c2)

(2αya)

×
[ ∞∑
n=0

(iω)2n+1
∫ T

0
ds1
∫ s1

0
ds2 · · ·

∫ s2n−1

0
ds2n

]
,

D(yb, ya;T ) (68)

= d
n+(1/2α)(c1+c2)
(1/2α)(c1−c2)−(1/2),(1/2α)(c1+c2)

(2αyb)

×dn+(1/2α)(c1+c2)
(1/2α)(c1−c2)−(1/2),(1/2α)(c1+c2)

(2αya)

×
[
1 +

∞∑
n=0

(iω)2n
∫ T

0
ds1
∫ s1

0
ds2 · · ·

∫ s2n−1

0
ds2n

]
,

with

E =
α2

2m
(2n+ (c1 + c2)/α+ 1)2

+
κ2

2m
− 1

2m
(c1 − c2)2, (69)

ω = (2κα/m)
[
(n+ c1/α+ 1/2)

× (n+ c2/α+ 1/2)
]1/2

. (70)
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It is also easy to show that[
1 +

∞∑
n=0

(iω)2n
∫ T

0
ds1
∫ s1

0
ds2 · · ·

∫ s2n−1

0
ds2n

]

= cos (ωT ) (71)

and
∞∑
n=0

(iω)2n+1
∫ T

0
ds1
∫ s1

0
ds2 · · ·

∫ s2n−1

0
ds2n = i sin (ωT ) .

(72)

Substituting all these results in (64), we will obtain the
propagator written in its spectral decomposition form and
we readily identify respectively the energy spectrum and
the corresponding wave functions:

E± =
α2

2m
(2n+ (c1 + c2)/α+ 1)2 (73)

− 1
2m

(c1 − c2)
2 +

κ2

2m
± (2κα/m) [(n+ c1/α+ 1/2) (n+ c2/α+ 1/2)]1/2

and

Φ+,n (y) (74)

= [α (n+ (c1 + c2)/2α+ 1/2) sin(2αy)]1/2 e−iσy(κy)

·
(
d
n+(1/2α)(c1+c2)
(1/2α)(c1−c2)+(1/2),(1/2α)(c1+c2)

(2αy)

d
n+(1/2α)(c1+c2)
(1/2α)(c1−c2)−(1/2),(1/2α)(c1+c2)

(2αy)

)
,

Φ−,n (y) (75)

= [α (n+ (c1 + c2)/2α+ 1/2) sin(2αy)]1/2 e−iσy(κy)

·
(

−dn+(1/2α)(c1+c2)
(1/2α)(c1−c2)+(1/2),(1/2α)(c1+c2)

(2αy)

d
n+(1/2α)(c1+c2)
(1/2α)(c1−c2)−(1/2),(1/2α)(c1+c2)

(2αy)

)
.

These results agree exactly with those of the literature [5].

4 Conclusion

In the present paper we have calculated the explicit ex-
pression of the propagator relative to a neutral spinning
particle in interaction with a linear increasing rotating
magnetic field and a Poschl–Teller oscillator potential.
This has been firstly treated using the factorization
method and we have been able to reconsider it via path
integral techniques. These exact calculations represent the

first attempt to found a general method. To treat the spin
dynamics, we have used the Schwinger recipe which re-
places the Pauli matrices by a pair of fermionic oscilla-
tors. The introduction of a particular rotation has then
simplified somewhat the Hamiltonian of the considered
system. This modification contributes by an effective po-
tential and couples the exterior velocity to the spin of the
particle. To overcome this difficulty, we have introduced
fermionic external current sources and have then reduced
the problem to that of the spinning forced Poschl–Teller
oscillator with the spin coupled to an external derivative
source. As a consequence, we have been able to integrate
over the spin variables described by fermionic oscillators
and the result is given as a perturbation series. Next, to
simplify the problem of the forced Poschl–Teller oscillator,
we have converted it to the sphere via an extension of the
dimension. Accordingly, the perturbation series is summed
thanks to a Laplace transformation and the use of some
recurrence formulae of the eigenfunctions of the angular
momentum. We have also appropriately determined the
energy spectrum and the corresponding wave functions.
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